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» The mitogen-activated protein
kinase (MAPK) cascades are
processes of cell signalling,
present in all eukaryotic cells.
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MAPK Cascade

Chemical Reaction Network
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Chemical Reaction Network

So+E=Y; =58, +E
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» Finite directed graph with no
loops.

» Nodes: nonnegative integer
linear combinations of the
species.
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The evolution of the concentration of the species can be modelled with a
system of ODEs that, under mass action kinetics, are polynomial. The
coefficients of the polynomial equations are {x1,...,km} C RZ; which
are called rate constants.



ODEs for Reaction Networks % @

The evolution of the concentration of the species can be modelled with a
system of ODEs that, under mass action kinetics, are polynomial. The
coefficients of the polynomial equations are {x1,...,km} C RZ; which
are called rate constants.

Key characteristics of the system of ODEs
» One autonomous differential equation per species.
» As many monomials as linear combinations appearing in the nodes.

» As many parameters as rate constants.
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For our system
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sp = —K1spe+ Koyl + Keyo
S| = —r4s1fy — K7S1PQ T R3YL T REY2 T RgY3 t KoY

PO = —R7S1PQ + RgY3 + R12Y4
PL = —r10PLR2 + Roy3 + R11Y4

&= —ryspet koY1 + K3yl

f‘l = —rgs1fy + Kpys + Ky
fp = —r10P1R + R11Y4 + R12V4

Y1 = K1Sp€ — K2yl — K31

Y2 = K4sify — K5yy — REY2
Y3 = K7SLPQ — Kgy3 — Kgy3
Y4 = R10P1f2 — RF11Y4 — K12V4
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For our system

S0 = —r1spet+ Koyl + KeY2
S| = —r4s1fi — R7S1IPQ T R3Y1 F REY2 + RgY3 + KoY
P = —r7s1Po + Kgy3 + K12Y4
So+E= Yl I S{+E PL = —r10PLF2 + KoY3 + R11Y4
€= —ryspet Koyy + K3y
S;+F; == e Yg Sq +F; i = —rgsify + Ksyy + ReY2
fy = —k1gP1fa + K11Y4 + K12Ya
Py+S, = S Y3 Py +5S; Y1 = R1spe = Koyl — K3y
Y

0 = R4S1fy — REY2 — K62
K
P, +F, —2 vy, "2, p 4 | Y3 = K751P — Kgy3 — K9Y3
1 25, Ya— %o 2:

4 = R10PLR — K11Y4 — K12Y4

So = —K1S0€ + Kay1 + KeY2



Hopf bifurcations

Consider a system of ODEs parametrized by u € R:
X = f,(x),

where x € R”, and f,,(x) varies smoothly in z and x. Assume that
fu(x0) = 0, and assume that there is a smooth curve of steady states:

po— x(p)

(that is, f, (x(1)) = 0 for all u) such that x(10) = Xo.




Hopf bifurcations

Consider a system of ODEs parametrized by u € R:
X = f,(x),

where x € R”, and f,,(x) varies smoothly in z and x. Assume that
fu(x0) = 0, and assume that there is a smooth curve of steady states:

po= x(p)

(that is, f, (x(1)) = 0 for all ) such that x(1o) = Xo.

A occurs at pg if the matrix J{xo, 110) has a
simple pair of imaginary eigenvalues, while all other eigenvalues remain
with negative real part.
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Example
Consider the system of ODEs

X=—y+x(p—x-y)
y=x+ylp—x—y)

The only steady state is (0,0) which is independent of p.




Hopf bifurcations %

Example
Consider the system of ODEs

X=—y+x(p—x-y)
y=x+ylp—x—y)

The only steady state is (0,0) which is independent of p. We have

HO0 =4 ]

with eigenvalues —i+ p and i+ p.



Hopf bifurcations

Example
Consider the system of ODEs

k= —y+x(p—x—y)
y=x+yp—x=y)

The dynamics of the system change depending on the value of u.




Our goal...

Decide whether there are values for the parameters such that a Hopf
bifurcation arises in the subsystem.
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Our goal...

Decide whether there are values for the parameters such that a Hopf
bifurcation arises in the subsystem.

Ingredients
» Equilibria
> Are the dynamics constrained to a lower-dimensional space?

» Eigenvalues of the Jacobian of the polynomials defining the ODEs at
equilibrium



Equilibria for CRN %

The positive steady states are defined as equilibrium points of the ODE
that have positive entries. That is, the points in RZ, such that x= 0.



Equilibria for CRN

The positive steady states are defined as equilibrium points of the ODE
that have positive entries. That is, the points in RZ, such that x= 0.

Example
For our system, the positive steady states are defined by the equations

0 = —K1s0€ + Koy1 + Key2
0 = —kKas1fi — K751P0 + K3y1 + Ksy2 + Kgy3 + Koys
0= —K751p0 + Kgys + K12ya
0= —r1op1fa + Koys + K11Ya
0 = —Rri1spe+ Kay1 + K3y
0 = —kK4s1fi + Ksy2 + Key2
0= —k1op1fr + K11y4 + K12Ya
0 = K1Spe — Kay1 — K3y1
0= kas1fi — Ksy2 — Key2
0 = K7s1po — Kgy3 — Koy3
0 = k1op1f2 — K11ys — K12Y4
S0, S1, P0, P1, & f1, f2, yi € RY.



Equilibria por CRN

The steady states can be parameterized as

(ks + ko) y3 (k2 + k3) kakgsi i p ko (ki1 + k12) v3

@(s0, 51, P1; f1,¥3) = (507517 , P1, s,
k7s1 kiks (ks + ke) so kioki2p1

3

KakeS1F K411 Koy3 )
9 9
k3 (ks + Ke) K5 + Ke K12



Conservation laws in CRN % @

Given an initial solution xg for the system of ODEs, the trajectories
containing xg, remain in xo + S for a linear space S (Stoichiometric
compatibility class). Therefore, we study the dynamics of the network
within xp + S.



Conservation laws in CRN A @T)

Given an initial solution xg for the system of ODEs, the trajectories
containing xg, remain in xo + S for a linear space S (Stoichiometric
compatibility class). Therefore, we study the dynamics of the network
within xp + S.

Example
In our system the compatibility classes are defined by the equations

sot+sit+yit+y+y3=T1
po+pL+ys+ys=T>

ety1=T3
ity=T,
b+ys=Ts.

These come precisely from the linear relations among the equations
defining the system of ODEs.



Conservation laws in CRN

Indeed, consider the conservation law
fb+ys=Ts.
The ODEs associated with , and y, are

fz = —Kiop1fr + K11ya + K12Ya

ya = Kiop1h — K11ya — K12Ya

whose sum vanishes, that is, f + ya = 0, which implies the conservation
law above.



Dynamics of CRN

Intuitively...
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Hopf bifurcations in two-layer cascade

Establish the
system of ODEs
X = fy(x) of
the network.

Compute
the Jacobian
JA(x*) for an
equilibria x*

For which parameter
values does Jr
have a pair of
pure imaginary

eigenvalues?
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For which parameter

Establish the Compute values does J

system of ODEs the Jacobian 4 = ~f
. N ave a pair of
x = f(x) of JH(x*) for an o

o, pure imaginary
the network. equilibria x .
eigenvalues?

Challenges The equilibria

are given by a

We cannot compute ]
parameterization.

the eigenvalues of J¢
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Establish the
system of ODEs
X = f.(x) of
the network.

There
is hope!

For which parameter

Computfe values does J¢
the Jacobian have a pair of
JA(x*) for an i

pure imaginary

equilibria x* .
eigenvalues?

The equilibria
are given by a

We cannot compute ]
parameterization.

the eigenvalues of J¢

There is no need
to compute the Liu's criterion for
exact value of Hopf bifurcations
the eigenvalues
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Denote the characteristic polynomial of Jg, (x(1)) as

Pu(A) = det (M = Jg,) Leexu) = A"+ br(p)A"™1 + -+ + by(p).

Since the coefficients of p,()) depend on 1, its Hurwitz determinants
depend on p as well. We denote each determinant by H;(u), for
i=1,...,n
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Denote the characteristic polynomial of Jg, (x(1)) as

Pu(A) = det (M = Jg,) Leexu) = A"+ br(p)A"™1 + -+ + by(p).

Since the coefficients of p,()) depend on 1, its Hurwitz determinants
depend on p as well. We denote each determinant by H;(u), for
i=1,...,n

Liu’s criterion

There is a simple Hopf bifurcation at xp with respect to p if and only if
the following conditions hold:

1. bn(MO) >0,
2. Hl(,uo) > 0, HQ(,U()) >0,..., H,,,g(uo) > 0, and
3. Hp1(o) = 0 and A2l 0.



Hopf bifurcations in two-layer Cascade 2N

Definition (Hurwitz determinants)

Let p(x) = asx® + as_1x* "1 + ...+ a;x+ ap be a polynomial with a; € R,
as > 0 and ap # 0. Define the Hurwitz matrix associated with p, as the
matrix H whose entries are defined by hj; = as_»iyj for i,j=1,...,s and
ax=0ifk<Oor k>s:

as_1 as 0 0 -+ 0
4s—3 ds—2 ds—1 as o 0
H= ;
0 0 0 a6_s ar
0 0 0 0 ao

The i-th Hurwitz determinant of H, denoted by H;, is defined as
H; = det(H,),), with [ = {17 ey I}.
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Results
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Results

» The characteristic polynomial of the Jacobian restricted to a
stoichiometric compatibility class has degree 6.

» We computed 6 Hurwitz determinants: {H,..., He} and evaluated
them at the parameterization of the steady states.

» Hy, Hp, H3, and Hg are rational functions (in 6 variables and 17
parameters) with positive coefficients.

» H, and Hs are rational functions whose coefficients can have
positive and negaive values.

A Hopf bifurcation appears if there is a set of parameters x* and an
steady state x* such that

Ha(K*,x*) > 0 and Hg(K*,x*) = 0.



Hopf bifurcations in two-layer Cascade

Proposition
For a real, multivariate polynomial

p(x) = a1x™ 4+ ax™? + -+ + apx™ € R[xy, ..., X4,

if aj is a vertex of Newt(p), then there exists x* € RZ; such that
sign(p(x*)) = sign(a;).
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Proposition
For a real, multivariate polynomial

p(x) = a1x™ 4+ ax™? + -+ + apx™ € R[xy, ..., X4,

if aj is a vertex of Newt(p), then there exists x* € RZ; such that
sign(p(x*)) = sign(a;).

Proposition

Let £, g € R[x1, x2, ... Xs]. Assume that « is a positive vertex of Newt(f),
B is a positive vertex of Newt(g), and 5_ is a negative vertex of
Newt(g). Then, if int(Nd)) Nint(Ng(54)) and

int(NAa)) Nint(Ng(B-)) are both nonempty, then there exists x* € R,
such that f{x*) > 0 and g(x*) = 0.



Hopf bifurcations in a two-layer cascade

B
@9

DA



Hopf bifurcations in a two-layer cascade

Applying the previous propositions in a reduced version of H; and Hs we
found the following parameters that satisfy Liu's criterion.

so =0.008221823730, s; = 8.670580350 x 10", py = 1, p; = 197868.6638,
e =0.007561436673, /i = 1,, = 0.007884719363, y; = 0.001238422300,
y2 =0.001238422300, y3 = 0.5461508658, y4 = 780.0694426

with parameters

k1 =20, iy = 0.004, k3 = 1, kg — 1428.303957, ks — 9.941572972 x 10~
ke =1, 17 = 9.941572072 x 108, kg = 150, kg — 1428.303957,

k1o =1, k11 = L, k12 = 1,

T, =0.5568504012, T, = 198650.2794,

T3 =0.008799858973, T, = 1.001238422, T5 = 780.0773273
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First layer
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Remaining questions %

> Are these parameters meaningful biologically?

» [s there a good implementation to speed up computations of
Hurwitz determinants?
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