

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

Emergence of oscillations in a two-layer cascade

Angélica Torres

Joint work with Elisenda Feliu

MPI MiS

AlToGeLiS 2024

MAPK cascade

 299

B

 \blacktriangleright The mitogen-activated protein kinase (MAPK) cascades are processes of cell signalling, present in all eukaryotic cells.

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$

MAPK cascade

- \blacktriangleright The mitogen-activated protein kinase (MAPK) cascades are processes of cell signalling, present in all eukaryotic cells.
- The Huang and Ferrell model consists on several layers where the activated kinase at each level, phosphorylates the kinase in the next one

イロト イ押 トイヨ トイヨ トー

B

 299

MAPK Cascade

Kロトメ部トメミトメミト ミニのRC

MAPK Cascade

Chemical Reaction Network

 $S_0 + E \xrightarrow[\kappa_2]{\kappa_1} Y_1 \xrightarrow{\kappa_3} S_1 + E$ $S_1 + F_1 \xrightarrow[\kappa_5]{\kappa_4} Y_2 \xrightarrow{\kappa_6} S_0 + F_1$ $P_0 + S_1 \xrightarrow[\kappa_8]{\kappa_7} Y_3 \xrightarrow{\kappa_9} P_1 + S_1$ $P_1 + F_2 \xrightarrow[\kappa_{10}]{\kappa_{10}} Y_4 \xrightarrow[\kappa_{12}]{\kappa_{12}} P_0 + F_2.$

 $A \equiv 1 + 4 \sqrt{10} \times 1 + 2 \times 1 + 2 \times 1 + 2$

 2990

MAPK Cascade

Chemical Reaction Network

- $S_0 + E \xrightarrow[\kappa_2]{\kappa_1} Y_1 \xrightarrow{\kappa_3} S_1 + E$ $S_1 + F_1 \xrightarrow[\kappa_5]{\kappa_4} Y_2 \xrightarrow{\kappa_6} S_0 + F_1$ $P_0 + S_1 \xrightarrow[\kappa_8]{\kappa_7} Y_3 \xrightarrow{\kappa_9} P_1 + S_1$ $P_1 + F_2 \xrightarrow[\kappa_{10}]{\kappa_{10}} Y_4 \xrightarrow[\kappa_{12}]{\kappa_{12}} P_0 + F_2.$
- Finite directed graph with no loops.
- ▶ Nodes: nonnegative integer linear combinations of the species.

KORKARA REPASA DA VOCA

KORKARA REPASA DA VOCA

The evolution of the concentration of the species can be modelled with a system of ODEs that, under mass action kinetics, are polynomial. The $\text{coefficients of the polynomial equations are }\{\kappa_1,\ldots,\kappa_m\}\subset\mathbb{R}^n_{>0}$ which are called *rate constants*.

KORKARA REPASA DA VOCA

The evolution of the concentration of the species can be modelled with a system of ODEs that, under mass action kinetics, are polynomial. The $\text{coefficients of the polynomial equations are }\{\kappa_1,\ldots,\kappa_m\}\subset\mathbb{R}^n_{>0}$ which are called *rate constants*.

Key characteristics of the system of ODEs

- \triangleright One autonomous differential equation per species.
- ▶ As many monomials as linear combinations appearing in the nodes.
- ▶ As many parameters as rate constants.

ODEs for Reaction Networks

For our system

$$
S_0 + E \frac{\kappa_1}{\kappa_2} Y_1 \xrightarrow{\kappa_3} S_1 + E
$$

\n
$$
S_1 + F_1 \xrightarrow{\kappa_4} Y_2 \xrightarrow{\kappa_6} S_0 + F_1
$$

\n
$$
P_0 + S_1 \xrightarrow{\kappa_7} Y_3 \xrightarrow{\kappa_9} P_1 + S_1
$$

\n
$$
P_1 + F_2 \xrightarrow{\kappa_{10}} Y_4 \xrightarrow{\kappa_{12}} P_0 + F_2.
$$

$$
s_0 = -\kappa_1 s_0 e + \kappa_2 y_1 + \kappa_6 y_2
$$

\n
$$
s_1 = -\kappa_4 s_1 f_1 - \kappa_7 s_1 \rho_0 + \kappa_3 y_1 + \kappa_5 y_2 + \kappa_8 y_3 + \kappa_9 y_3
$$

\n
$$
\rho_0 = -\kappa_7 s_1 \rho_0 + \kappa_8 y_3 + \kappa_1 y_2
$$

\n
$$
\rho_1 = -\kappa_1 \rho_1 \rho_2 + \kappa_9 y_3 + \kappa_1 y_1
$$

\n
$$
\dot{e} = -\kappa_1 s_0 e + \kappa_2 y_1 + \kappa_3 y_1
$$

\n
$$
f_1 = -\kappa_4 s_1 f_1 + \kappa_5 y_2 + \kappa_6 y_2
$$

\n
$$
f_2 = -\kappa_1 \rho_1 \rho_2 + \kappa_1 \gamma_1 u_1 + \kappa_1 y_2 u_1
$$

\n
$$
y_1 = \kappa_1 s_0 e - \kappa_2 y_1 - \kappa_3 y_1
$$

\n
$$
y_2 = \kappa_4 s_1 f_1 - \kappa_5 y_2 - \kappa_6 y_2
$$

\n
$$
y_3 = \kappa_7 s_1 \rho_0 - \kappa_8 y_3 - \kappa_9 y_3
$$

\n
$$
y_4 = \kappa_1 \rho_1 \rho_2 - \kappa_1 \gamma_4 - \kappa_1 y_2
$$

K ロ → K 御 → K 差 → K 差 → C 差 → の Q Q →

ODEs for Reaction Networks

For our system

$$
S_0 + E \frac{\kappa_1}{\kappa_2} Y_1 \xrightarrow{\kappa_3} S_1 + E
$$

\n
$$
S_1 + F_1 \xrightarrow{\kappa_4} Y_2 \xrightarrow{\kappa_6} S_0 + F_1
$$

\n
$$
P_0 + S_1 \xrightarrow{\kappa_7} Y_3 \xrightarrow{\kappa_9} P_1 + S_1
$$

\n
$$
P_1 + F_2 \xrightarrow{\kappa_{10}} Y_4 \xrightarrow{\kappa_{12}} P_0 + F_2.
$$

$$
s_0 = -\kappa_1 s_0 e + \kappa_2 y_1 + \kappa_6 y_2
$$

\n
$$
s_1 = -\kappa_4 s_1 f_1 - \kappa_7 s_1 \rho_0 + \kappa_3 y_1 + \kappa_5 y_2 + \kappa_8 y_3 + \kappa_9 y_3
$$

\n
$$
\rho_0 = -\kappa_7 s_1 \rho_0 + \kappa_8 y_3 + \kappa_1 y_2
$$

\n
$$
\rho_1 = -\kappa_1 \rho_1 \rho_2 + \kappa_9 y_3 + \kappa_1 y_1
$$

\n
$$
\dot{e} = -\kappa_1 s_0 e + \kappa_2 y_1 + \kappa_3 y_1
$$

\n
$$
f_1 = -\kappa_4 s_1 f_1 + \kappa_5 y_2 + \kappa_6 y_2
$$

\n
$$
f_2 = -\kappa_1 \rho_1 \rho_2 + \kappa_1 \gamma_1 u_1 + \kappa_1 y_2 u_1
$$

\n
$$
y_1 = \kappa_1 s_0 e - \kappa_2 y_1 - \kappa_3 y_1
$$

\n
$$
y_2 = \kappa_4 s_1 f_1 - \kappa_5 y_2 - \kappa_6 y_2
$$

\n
$$
y_3 = \kappa_7 s_1 \rho_0 - \kappa_8 y_3 - \kappa_9 y_3
$$

\n
$$
y_4 = \kappa_1 \rho_1 \rho_2 - \kappa_1 \gamma_4 - \kappa_1 y_2
$$

K ロ → K 御 → K 差 → K 差 → C 差 → の Q Q →

ODEs for Reaction Networks

For our system

$$
S_0 + E \frac{\kappa_1}{\overline{\kappa_2}} Y_1 \xrightarrow{\kappa_3} S_1 + E
$$

\n
$$
S_1 + F_1 \xrightarrow{\kappa_4} Y_2 \xrightarrow{\kappa_6} S_0 + F_1
$$

\n
$$
P_0 + S_1 \xrightarrow{\kappa_7} Y_3 \xrightarrow{\kappa_9} P_1 + S_1
$$

\n
$$
P_1 + F_2 \xrightarrow{\kappa_{10}} Y_4 \xrightarrow{\kappa_{12}} P_0 + F_2.
$$

$$
s_0 = -\kappa_1 s_0 e + \kappa_2 y_1 + \kappa_6 y_2
$$

\n
$$
= -\kappa_4 s_1 f_1 - \kappa_7 s_1 \rho_0 + \kappa_3 y_1 + \kappa_5 y_2 + \kappa_8 y_3 + \kappa_9 y_3
$$

\n
$$
\rho_0 = -\kappa_1 \rho_0 + \kappa_3 y_3 + \kappa_1 y_4
$$

\n
$$
\rho_1 = -\kappa_1 \rho_0 + \kappa_2 y_3 + \kappa_1 y_4
$$

\n
$$
\dot{e} = -\kappa_1 \rho_5 e + \kappa_2 y_1 + \kappa_3 y_1
$$

\n
$$
f_1 = -\kappa_4 s_1 f_1 + \kappa_5 y_2 + \kappa_6 y_2
$$

\n
$$
\dot{f}_2 = -\kappa_1 \rho_0 + \kappa_2 y_1 - \kappa_3 y_1
$$

\n
$$
\dot{y}_1 = \kappa_1 s_0 e - \kappa_2 y_1 - \kappa_3 y_1
$$

\n
$$
\dot{y}_2 = \kappa_4 s_1 f_1 - \kappa_5 y_2 - \kappa_6 y_2
$$

\n
$$
\dot{y}_3 = \kappa_7 s_1 \rho_0 - \kappa_8 y_3 - \kappa_9 y_3
$$

\n
$$
\dot{y}_4 = \kappa_{10} \rho_1 f_2 - \kappa_{11} y_4 - \kappa_{12} y_4
$$

 $s₁$ ^{\cdot}

$$
\dot{s_0} = -\kappa_1 s_0 e + \kappa_2 y_1 + \kappa_6 y_2
$$

K ロ → K 御 → K 差 → K 差 → C 差 → の Q Q →

KORKAR KERKER DRA

Consider a system of ODEs parametrized by $\mu \in \mathbb{R}$:

$$
\dot{x}=f_{\mu}(x),
$$

where $x \in \mathbb{R}^n$, and $f_\mu(x)$ varies smoothly in μ and x . Assume that $f_{\mu_0}(\mathsf{x}_0)=0$, and assume that there is a smooth curve of steady states:

$$
\mu \ \mapsto \ x(\mu)
$$

(that is, $f_\mu(x(\mu)) = 0$ for all μ) such that $x(\mu_0) = x_0$.

KORKAR KERKER DRA

Consider a system of ODEs parametrized by *µ ∈* R:

$$
\dot{x}=f_{\mu}(x),
$$

where $x \in \mathbb{R}^n$, and $f_\mu(x)$ varies smoothly in μ and x . Assume that $f_{\mu_0}(\mathsf{x}_0)=0$, and assume that there is a smooth curve of steady states:

$$
\mu \ \mapsto \ x(\mu)
$$

(that is, $f_\mu(x(\mu)) = 0$ for all μ) such that $x(\mu_0) = x_0$.

A simple Hopf bifurcation occurs at μ_0 if the matrix $J_f(x_0, \mu_0)$ has a simple pair of imaginary eigenvalues, while all other eigenvalues remain with negative real part.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

Example

Consider the system of ODEs

$$
\dot{x} = -y + x(\mu - x^{2} - y^{2})
$$

$$
\dot{y} = x + y(\mu - x^{2} - y^{2})
$$

The only steady state is $(0, 0)$ which is independent of μ .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

Example

Consider the system of ODEs

$$
\dot{x} = -y + x(\mu - x^{2} - y^{2})
$$

$$
\dot{y} = x + y(\mu - x^{2} - y^{2})
$$

The only steady state is $(0, 0)$ which is independent of μ . We have

$$
J_f((0,0),\mu) = \left[\begin{array}{cc} \mu & -1 \\ 1 & \mu \end{array}\right]
$$

with eigenvalues $-i + \mu$ and $i + \mu$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

Example

Consider the system of ODEs

$$
\dot{x} = -y + x(\mu - x^{2} - y^{2})
$$

$$
\dot{y} = x + y(\mu - x^{2} - y^{2})
$$

The dynamics of the system change depending on the value of *µ*.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Our goal...

Decide whether there are values for the parameters such that a Hopf bifurcation arises in the subsystem.

Our goal...

Decide whether there are values for the parameters such that a Hopf bifurcation arises in the subsystem.

Ingredients

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

Our goal...

Decide whether there are values for the parameters such that a Hopf bifurcation arises in the subsystem.

Ingredients

- \blacktriangleright Equilibria
- ▶ Are the dynamics constrained to a lower-dimensional space?

KORK EXTERNEY ORA

Our goal...

Decide whether there are values for the parameters such that a Hopf bifurcation arises in the subsystem.

Ingredients

- \blacktriangleright Equilibria
- ▶ Are the dynamics constrained to a lower-dimensional space?
- ▶ Eigenvalues of the Jacobian of the polynomials defining the ODEs at equilibrium

Equilibria for CRN

KORKARA REPASA DA VOCA

The positive steady states are defined as equilibrium points of the ODE that have positive entries. That is, the points in $\mathbb{R}^n_{>0}$ such that $\dot{\mathsf{x}}=0.$

Equilibria for CRN

KORKARA REPASA DA VOCA

The positive steady states are defined as equilibrium points of the ODE that have positive entries. That is, the points in $\mathbb{R}^n_{>0}$ such that $\dot{\mathsf{x}}=0.$

Example

For our system, the positive steady states are defined by the equations

$$
0 = -\kappa_1 s_0 e + \kappa_2 y_1 + \kappa_6 y_2
$$

\n
$$
0 = -\kappa_4 s_1 f_1 - \kappa_7 s_1 p_0 + \kappa_3 y_1 + \kappa_5 y_2 + \kappa_8 y_3 + \kappa_9 y_3
$$

\n
$$
0 = -\kappa_7 s_1 p_0 + \kappa_8 y_3 + \kappa_{12} y_4
$$

\n
$$
0 = -\kappa_{10} p_1 f_2 + \kappa_9 y_3 + \kappa_{11} y_4
$$

\n
$$
0 = -\kappa_{15} s_0 e + \kappa_2 y_1 + \kappa_3 y_1
$$

\n
$$
0 = -\kappa_{16} s_1 f_1 + \kappa_5 y_2 + \kappa_6 y_2
$$

\n
$$
0 = -\kappa_{10} p_1 f_2 + \kappa_{11} y_4 + \kappa_{12} y_4
$$

\n
$$
0 = \kappa_1 s_0 e - \kappa_2 y_1 - \kappa_3 y_1
$$

\n
$$
0 = \kappa_4 s_1 f_1 - \kappa_5 y_2 - \kappa_6 y_2
$$

\n
$$
0 = \kappa_7 s_1 p_0 - \kappa_8 y_3 - \kappa_9 y_3
$$

\n
$$
0 = \kappa_{10} p_1 f_2 - \kappa_{11} y_4 - \kappa_{12} y_4
$$

\n
$$
s_0, s_1, p_0, p_1, e, f_1, f_2, y_i \in \mathbb{R}^n_+
$$

K ロ → K 御 → K 差 → K 差 → C 差 → の Q Q →

The steady states can be parameterized as

$$
\varphi(s_0, s_1, p_1, f_1, y_3) = \left(s_0, s_1, \frac{(k_8 + k_9) y_3}{k_7 s_1}, p_1, \frac{(k_2 + k_3) k_4 k_6 s_1 f_1}{k_1 k_3 (k_5 + k_6) s_0}, f_1, \frac{k_9 (k_{11} + k_{12}) y_3}{k_{10} k_{12} p_1}, \frac{k_4 k_6 s_1 f_1}{k_3 (k_5 + k_6)}, \frac{k_4 s_1 f_1}{k_5 + k_6}, y_3, \frac{k_9 y_3}{k_{12}}\right)
$$

Conservation laws in CRN

KORK EXTERNEY ORA

Given an initial solution x_0 for the system of ODEs, the trajectories containing x_0 , remain in $x_0 + S$ for a linear space *S* (*Stoichiometric compatibility class*). Therefore, we study the dynamics of the network within $x_0 + S$.

Conservation laws in CRN

KORKAR KERKER E VOOR

Given an initial solution x_0 for the system of ODEs, the trajectories containing x_0 , remain in $x_0 + S$ for a linear space *S* (*Stoichiometric compatibility class*). Therefore, we study the dynamics of the network within $x_0 + S$.

Example

In our system the compatibility classes are defined by the equations

$$
s_0 + s_1 + y_1 + y_2 + y_3 = T_1
$$

\n
$$
p_0 + p_1 + y_3 + y_4 = T_2
$$

\n
$$
e + y_1 = T_3
$$

\n
$$
f_1 + y_2 = T_4
$$

\n
$$
f_2 + y_4 = T_5.
$$

These come precisely from the linear relations among the equations defining the system of ODEs.

Conservation laws in CRN

KO K K Ø K K E K K E K V K K K K K K K K K

Indeed, consider the conservation law

$$
f_2+y_4=\,T_5.
$$

The ODEs associated with f_2 and y_4 are

$$
\dot{f}_2 = -\kappa_{10} p_1 f_2 + \kappa_{11} y_4 + \kappa_{12} y_4
$$

$$
\dot{y}_4 = \kappa_{10} p_1 f_2 - \kappa_{11} y_4 - \kappa_{12} y_4
$$

whose sum vanishes, that is, $\dot{f}_2 + \dot{y}_4 = 0,$ which implies the conservation law above.

Dynamics of CRN

Intuitively...

イロメメタメメをトメをトー \Rightarrow 2990

イロメ 不優 メイ君 メイ君 メー 君一

 2990

KORKARA REPASA DA VOCA

There is hope! There is no need to compute the exact value of the eigenvalues

Liu's criterion for Hopf bifurcations

 2990

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q ◇

Denote the characteristic polynomial of $J_{f_\mu}(\mathsf{x}(\mu))$ as

$$
\rho_\mu(\lambda) := \det \big(\lambda I - J_{f_\mu} \big) \, |_{x = x(\mu)} = \lambda^n + b_1(\mu) \lambda^{n-1} + \cdots + b_n(\mu).
$$

Since the coefficients of $p_\mu(\lambda)$ depend on μ , its Hurwitz determinants depend on μ as well. We denote each determinant by $H_i(\mu)$, for $i = 1, \ldots, n$.

KORKAR KERKER DRA

Denote the characteristic polynomial of $J_{f_\mu}(\mathsf{x}(\mu))$ as

$$
\rho_\mu(\lambda) := \det \big(\lambda I - J_{f_\mu} \big) \, |_{x = x(\mu)} = \lambda^n + b_1(\mu) \lambda^{n-1} + \cdots + b_n(\mu).
$$

Since the coefficients of $p_\mu(\lambda)$ depend on μ , its Hurwitz determinants depend on μ as well. We denote each determinant by $H_i(\mu)$, for $i = 1, \ldots, n$.

Liu's criterion

There is a simple Hopf bifurcation at x_0 with respect to μ if and only if the following conditions hold:

1. $b_n(\mu_0) > 0$, **2.** *H*₁(μ ₀) > 0, *H*₂(μ ₀) > 0, *...*, *H*_{*n*-2}(μ ₀) > 0, and **3.** $H_{n-1}(\mu_0) = 0$ and $\frac{d(H_{n-1}(\mu))}{d\mu}|_{\mu=\mu_0} \neq 0$.

.

KORKAR KERKER ST VOOR

Definition (Hurwitz determinants)

Let $p(x) = a_s x^s + a_{s-1} x^{s-1} + \ldots + a_1 x + a_0$ be a polynomial with $a_i \in \mathbb{R}$, $a_s > 0$ and $a₀ \neq 0$. Define the Hurwitz matrix associated with *p*, as the matrix *H* whose entries are defined by $h_{i,j} = a_{s-2j+i}$ for $i, j = 1, \ldots, s$ and $a_k = 0$ if $k < 0$ or $k > s$:

$$
H = \left(\begin{array}{cccccc} a_{s-1} & a_s & 0 & 0 & \cdots & 0 \\ a_{s-3} & a_{s-2} & a_{s-1} & a_s & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & a_{6-s} & \cdots & a_2 \\ 0 & 0 & 0 & 0 & \cdots & a_0 \end{array}\right)
$$

The *i*-th Hurwitz determinant of *H*, denoted by *Hⁱ* , is defined as $H_i = \det(H_i)$, with $I = \{1, \ldots, i\}$.

KORKARA REPASA DA VOCA

Results

▶ The characteristic polynomial of the Jacobian restricted to a stoichiometric compatibility class has degree 6.

KORKARA REPASA DA VOCA

- \blacktriangleright The characteristic polynomial of the Jacobian restricted to a stoichiometric compatibility class has degree 6.
- \triangleright We computed 6 Hurwitz determinants: $\{H_1, \ldots, H_6\}$ and evaluated them at the parameterization of the steady states.

KORKAR KERKER DRA

- \blacktriangleright The characteristic polynomial of the Jacobian restricted to a stoichiometric compatibility class has degree 6.
- \triangleright We computed 6 Hurwitz determinants: $\{H_1, \ldots, H_6\}$ and evaluated them at the parameterization of the steady states.
- \blacktriangleright *H*₁, *H*₂, *H*₃, and *H*₆ are rational functions (in 6 variables and 17 parameters) with positive coefficients.

KORKARA REPASA DA VOCA

- \blacktriangleright The characteristic polynomial of the Jacobian restricted to a stoichiometric compatibility class has degree 6.
- \triangleright We computed 6 Hurwitz determinants: $\{H_1, \ldots, H_6\}$ and evaluated them at the parameterization of the steady states.
- \blacktriangleright *H*₁, *H*₂, *H*₃, and *H*₆ are rational functions (in 6 variables and 17 parameters) with positive coefficients.
- \blacktriangleright *H*₄ and *H*₅ are rational functions whose coefficients can have positive and negaive values.

KORKARA REPASA DA VOCA

- \blacktriangleright The characteristic polynomial of the Jacobian restricted to a stoichiometric compatibility class has degree 6.
- \triangleright We computed 6 Hurwitz determinants: $\{H_1, \ldots, H_6\}$ and evaluated them at the parameterization of the steady states.
- \blacktriangleright *H*₁, *H*₂, *H*₃, and *H*₆ are rational functions (in 6 variables and 17 parameters) with positive coefficients.
- \blacktriangleright *H*₄ and *H*₅ are rational functions whose coefficients can have positive and negaive values.

KORKAR KERKER DRA

Results

- \blacktriangleright The characteristic polynomial of the Jacobian restricted to a stoichiometric compatibility class has degree 6.
- \triangleright We computed 6 Hurwitz determinants: $\{H_1, \ldots, H_6\}$ and evaluated them at the parameterization of the steady states.
- \blacktriangleright *H*₁, *H*₂, *H*₃, and *H*₆ are rational functions (in 6 variables and 17 parameters) with positive coefficients.
- \blacktriangleright *H*₄ and *H*₅ are rational functions whose coefficients can have positive and negaive values.

A Hopf bifurcation appears if there is a set of parameters *κ ∗* and an steady state *x ∗* such that

$$
H_4(k^*, x^*) \ge 0
$$
 and $H_5(k^*, x^*) = 0$.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q ◇

Proposition

For a real, multivariate polynomial

$$
p(x) = a_1x^{\alpha_1} + a_2x^{\alpha_2} + \cdots + a_{\ell}x^{\alpha_{\ell}} \in \mathbb{R}[x_1,\ldots,x_n],
$$

if α_i is a vertex of $\mathsf{Newt}(p)$, then there exists $\mathsf{x}^* \in \mathbb{R}_{>0}^n$ such that $sign(p(x^*)) = sign(a_i).$

KORKAR KERKER DRAM

Proposition

For a real, multivariate polynomial

$$
p(x) = a_1 x^{\alpha_1} + a_2 x^{\alpha_2} + \cdots + a_\ell x^{\alpha_\ell} \in \mathbb{R}[x_1, \ldots, x_n],
$$

if α_i is a vertex of $\mathsf{Newt}(p)$, then there exists $\mathsf{x}^* \in \mathbb{R}_{>0}^n$ such that $sign(p(x^*)) = sign(a_i).$

Proposition

Let $f, g \in \mathbb{R}[x_1, x_2, \ldots x_s]$. Assume that α is a positive vertex of $\text{Newt}(f)$, *β*⁺ is a positive vertex of Newt(*g*), and *β[−]* is a negative vertex of $Newt(g)$. Then, if $int(N_f(\alpha)) \cap int(N_g(\beta_+))$ and $\mathrm{int}(N_f(\alpha))\cap\mathrm{int}(N_g(\beta_-))$ are both nonempty, then there exists $x^*\in\mathbb{R}_{>0}^s$ such that $f(x^*) > 0$ and $g(x^*) = 0$.

KORKARA REPASA DA VOCA

Applying the previous propositions in a reduced version of H_4 and H_5 we found the following parameters that satisfy Liu's criterion.

*s*⁰ =0*.*008221823730*,s*¹ = 8*.*670580350 *×* 10*−*⁷ *, p*⁰ = 1*, p*¹ = 197868*.*6638*, e* =0*.*007561436673*, f*¹ = 1*, f*² = 0*.*007884719363*, y*¹ = 0*.*001238422300*, y*² =0*.*001238422300*, y*³ = 0*.*5461508658*, y*⁴ = 780*.*0694426

with parameters

 κ_1 = 20*,* κ_2 = 0.004*,* κ_3 = 1*,* κ_4 = 1428*.*303957*,* κ_5 = 9.941572972 \times 10⁻⁸ $\kappa_6 =$ $1, \kappa_7 =$ $9.941572972 \times 10^8, \kappa_8 =$ $150, \kappa_9 =$ $1428.303957,$ $\kappa_{10} = 1, \kappa_{11} = 1, \kappa_{12} = 1,$ *T*¹ =0*.*5568504012*,T*² = 198650*.*2794*, T*³ =0*.*008799858973*,T*⁴ = 1*.*001238422*,T*⁵ = 780*.*0773273

 4 ロ } 4 6 } 4 3 } 4 \equiv Ğ, 299 \mathbf{p}

イロメ イ部メ イ君メ イ君メー \equiv 990

Remaining questions

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

- \blacktriangleright Are these parameters meaningful biologically?
- ▶ Is there a good implementation to speed up computations of Hurwitz determinants?

Remaining questions

KORKARA REPASA DA VOCA

- \blacktriangleright Are these parameters meaningful biologically?
- ▶ Is there a good implementation to speed up computations of Hurwitz determinants?

References

- - C. Y. Huang and J. E. Ferrell.

Ultrasensitivity in the mitogen-activated protein kinase cascade. *Proc. Natl. Acad. Sci. U.S.A.*, 93:10078–10083, 1996

I L. Qiao, R. B. Nachbar, I. G. Kevrekidis, and S. Y. Shvartsman. Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. *PLoS Comput. Biol.*, 3(9):1819–1826, 2007.

Remaining questions

KORKARA REPASA DA VOCA

- \blacktriangleright Are these parameters meaningful biologically?
- ▶ Is there a good implementation to speed up computations of Hurwitz determinants?

References

- - **C.** Y. Huang and J. E. Ferrell.

Ultrasensitivity in the mitogen-activated protein kinase cascade. *Proc. Natl. Acad. Sci. U.S.A.*, 93:10078–10083, 1996

i L. Qiao, R. B. Nachbar, I. G. Kevrekidis, and S. Y. Shvartsman. Bistability and oscillations in the Huang-Ferrell model of MAPK signaling.

PLoS Comput. Biol., 3(9):1819–1826, 2007.

Danke^l