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▶ Finite directed graph with no
loops.

▶ Nodes: nonnegative integer
linear combinations of the
species.



ODEs for Reaction Networks

The evolution of the concentration of the species can be modelled with a
system of ODEs that, under mass action kinetics, are polynomial. The
coefficients of the polynomial equations are {κ1, . . . , κm} ⊂ Rn

>0 which
are called rate constants.

Key characteristics of the system of ODEs
▶ One autonomous differential equation per species.
▶ As many monomials as linear combinations appearing in the nodes.
▶ As many parameters as rate constants.
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ẏ2 = κ4s1 f1 − κ5y2 − κ6y2
ẏ3 = κ7s1p0 − κ8y3 − κ9y3

ẏ4 = κ10p1 f2 − κ11y4 − κ12y4
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Hopf bifurcations

Consider a system of ODEs parametrized by µ ∈ R:

ẋ = fµ(x),

where x ∈ Rn, and fµ(x) varies smoothly in µ and x. Assume that
fµ0(x0) = 0, and assume that there is a smooth curve of steady states:

µ 7→ x(µ)

(that is, fµ (x(µ)) = 0 for all µ) such that x(µ0) = x0.

A simple Hopf bifurcation occurs at µ0 if the matrix Jf(x0, µ0) has a
simple pair of imaginary eigenvalues, while all other eigenvalues remain
with negative real part.
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Hopf bifurcations

Example
Consider the system of ODEs

ẋ = −y + x(µ− x2 − y2)

ẏ = x + y(µ− x2 − y2)

The only steady state is (0, 0) which is independent of µ.

We have

Jf((0, 0), µ) =
[

µ −1
1 µ

]
with eigenvalues −i + µ and i + µ.
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ẋ = −y + x(µ− x2 − y2)
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Hopf bifurcations

Example
Consider the system of ODEs

ẋ = −y + x(µ− x2 − y2)

ẏ = x + y(µ− x2 − y2)

The dynamics of the system change depending on the value of µ.

µ ≤ 0 µ ≥ 0



Our goal...
Decide whether there are values for the parameters such that a Hopf
bifurcation arises in the subsystem.

Ingredients

▶ Equilibria
▶ Are the dynamics constrained to a lower-dimensional space?
▶ Eigenvalues of the Jacobian of the polynomials defining the ODEs at

equilibrium
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Equilibria for CRN
The positive steady states are defined as equilibrium points of the ODE
that have positive entries. That is, the points in Rn

>0 such that ẋ = 0.
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Equilibria por CRN

The steady states can be parameterized as

φ(s0, s1, p1, f1, y3) =

(
s0, s1,

(k8 + k9) y3
k7s1

, p1,
(k2 + k3) k4k6s1f1
k1k3 (k5 + k6) s0

, f1,
k9 (k11 + k12) y3

k10k12p1
,

κ4κ6s1f1
κ3 (κ5 + κ6)

,
κ4s1f1
κ5 + κ6

, y3,
κ9y3
κ12

)



Conservation laws in CRN

Given an initial solution x0 for the system of ODEs, the trajectories
containing x0, remain in x0 + S for a linear space S (Stoichiometric
compatibility class). Therefore, we study the dynamics of the network
within x0 + S.

Example
In our system the compatibility classes are defined by the equations

s0 + s1 + y1 + y2 + y3 = T1

p0 + p1 + y3 + y4 = T2

e + y1 = T3

f1 + y2 = T4

f2 + y4 = T5.

These come precisely from the linear relations among the equations
defining the system of ODEs.
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Conservation laws in CRN

Indeed, consider the conservation law

f2 + y4 = T5.

The ODEs associated with f2 and y4 are

ḟ2 = −κ10p1f2 + κ11y4 + κ12y4

ẏ4 = κ10p1f2 − κ11y4 − κ12y4

whose sum vanishes, that is, ḟ2 + ẏ4 = 0, which implies the conservation
law above.



Dynamics of CRN

Intuitively...



Hopf bifurcations in two-layer cascade

Establish the
system of ODEs

ẋ = fκ(x) of
the network.

Compute
the Jacobian
Jf(x∗) for an
equilibria x∗

For which parameter
values does Jf
have a pair of
pure imaginary
eigenvalues?

The equilibria
are given by a

parameterization.
We cannot compute
the eigenvalues of Jf

There is no need
to compute the
exact value of
the eigenvalues

Liu’s criterion for
Hopf bifurcations
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Hopf Bifurcations in two-layer Cascade

Denote the characteristic polynomial of Jfµ(x(µ)) as

pµ(λ) := det
(
λI − Jfµ

)
|x=x(µ) = λn + b1(µ)λ

n−1 + · · ·+ bn(µ).

Since the coefficients of pµ(λ) depend on µ, its Hurwitz determinants
depend on µ as well. We denote each determinant by Hi(µ), for
i = 1, . . . , n.

Liu’s criterion
There is a simple Hopf bifurcation at x0 with respect to µ if and only if
the following conditions hold:

1. bn(µ0) > 0,
2. H1(µ0) > 0, H2(µ0) > 0, . . ., Hn−2(µ0) > 0, and
3. Hn−1(µ0) = 0 and d(Hn−1(µ))

dµ |µ=µ0 6= 0.
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Hopf bifurcations in two-layer Cascade

Definition (Hurwitz determinants)
Let p(x) = asxs + as−1xs−1 + . . .+ a1x + a0 be a polynomial with ai ∈ R,

as > 0 and a0 6= 0. Define the Hurwitz matrix associated with p, as the
matrix H whose entries are defined by hi,j = as−2i+j for i, j = 1, . . . , s and
ak = 0 if k < 0 or k > s:

H =


as−1 as 0 0 · · · 0
as−3 as−2 as−1 as · · · 0

...
...

...
...

...
...

0 0 0 a6−s · · · a2
0 0 0 0 · · · a0

 .

The i-th Hurwitz determinant of H, denoted by Hi, is defined as
Hi = det(HI,I), with I = {1, . . . , i}.



Hopf Bifurcations in two-layer Cascade

Results
▶ The characteristic polynomial of the Jacobian restricted to a

stoichiometric compatibility class has degree 6.

▶ We computed 6 Hurwitz determinants: {H1, . . . ,H6} and evaluated
them at the parameterization of the steady states.

▶ H1,H2,H3, and H6 are rational functions (in 6 variables and 17
parameters) with positive coefficients.

▶ H4 and H5 are rational functions whose coefficients can have
positive and negaive values.

A Hopf bifurcation appears if there is a set of parameters κ∗ and an
steady state x∗ such that

H4(k∗, x∗) ≥ 0 and H5(k∗, x∗) = 0.
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Hopf bifurcations in two-layer Cascade

Proposition
For a real, multivariate polynomial

p(x) = a1xα1 + a2xα2 + · · ·+ aℓxαℓ ∈ R[x1, . . . , xn],

if αi is a vertex of Newt(p), then there exists x∗ ∈ Rn
>0 such that

sign(p(x∗)) = sign(ai).

Proposition
Let f, g ∈ R[x1, x2, . . . xs]. Assume that α is a positive vertex of Newt(f),
β+ is a positive vertex of Newt(g), and β− is a negative vertex of
Newt(g). Then, if int(Nf(α)) ∩ int(Ng(β+)) and
int(Nf(α)) ∩ int(Ng(β−)) are both nonempty, then there exists x∗ ∈ Rs

>0
such that f(x∗) > 0 and g(x∗) = 0.
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Hopf bifurcations in a two-layer cascade

Applying the previous propositions in a reduced version of H4 and H5 we
found the following parameters that satisfy Liu’s criterion.

s0 =0.008221823730, s1 = 8.670580350 × 10−7, p0 = 1, p1 = 197868.6638,
e =0.007561436673, f1 = 1, f2 = 0.007884719363, y1 = 0.001238422300,

y2 =0.001238422300, y3 = 0.5461508658, y4 = 780.0694426

with parameters

κ1 =20, κ2 = 0.004, κ3 = 1, κ4 = 1428.303957, κ5 = 9.941572972 × 10−8

κ6 =1, κ7 = 9.941572972 × 108, κ8 = 150, κ9 = 1428.303957,
κ10 =1, κ11 = 1, κ12 = 1,
T1 =0.5568504012,T2 = 198650.2794,
T3 =0.008799858973,T4 = 1.001238422,T5 = 780.0773273
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Remaining questions

▶ Are these parameters meaningful biologically?
▶ Is there a good implementation to speed up computations of

Hurwitz determinants?
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