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Two major breakthroughs of the 21st century resulted in 
unprecedented amounts of data, sparking an industry shift to 
data-driven techniques.
The Web 2.0 Revolution Biological and Medical Tech



New capabilities to make predictions via old ideas.
• Neural Nets: Pitts and McCulloch, A logical calculus of the ideas immanent in 

nervous activity. The bulletin of mathematical biophysics 5 (1943): 115-133. 

• Randomization: Pierce and Jastrow, (1885). On Small Differences in 
Sensation. Memoirs of the National Academy of Sciences. 3 (1885): 73–83. 

• Randomized Controlled Trials:  Fisher, The design of experiments,  (1935).


• Hypothesis Testing: Pearson, Statistical Hypothesis Testing, (1900).

Warren McCulloch Charles Pierce Ronald Fisher Karl Pearson



Different goals for internet tech and bio-tech.

Internet tech focuses mainly 
on prediction accuracy 

Biological Tech focuses on 
discovering laws and 
mechanisms that lead to an 
outcome



A probabilistic prediction:
From a list of possible candidates for a Nobel Prize, I should predict 

the winner as the person who eats the most chocolate.*
There is a significant positive correlation between 
chocolate consumption (per capita) and the 
number of Nobel Laureates (per capita).


-Messerli, 2012

*A deeper description of this example can be found in Elements of Causal Inference by Peters, Janzing and Schölkopf (2017).

A standard ML model may learn this pattern and use it to make such a prediction.



Recent perspectives in AI/ML embrace the biological perspective.

Knowledge of the underlying causal laws and mechanisms can help produce better 
predictions.

Rapid expansion of the ML subfield known as causality.
• Applications in both internet tech and biomedical fields

• A fundamental goal is to discover causal relations in complex systems of jointly distributed 

random variables

The problem of Causal Discovery. Given data, can we discover the causal 
relations that guide the data-generating process?



Representing causal relations:
A structural equation model (SEM):

X1 = N1

X2 = 4X1 + N2

 and independentNi ∼ N(0,1)

Chain rule:

fX(x1, x2) = fX1
(x1)fX2|X1

(x2 |x1)
= fX2

(x2)fX1|X2
(x1 |x2)

An intervention:

Perturb :      X1 N1 ∼ N(0,3)

Changing the distribution of   changes 
the distribution of :


   

X1
X2

X2 ∼ N(0,49)

Changing the distribution of   does 
not change the distribution of :


 


  

X2 |X1
X1

N2 ∼ N(0,3)

X1 = N1 ∼ N(0,1)
X2 = 4X1 + N2



fX(x1, …, xp) = ∏
i∈[p]

fXi|XpaG(i)
(xi |xpaG(i))

Representing causal relations:
[p] := {1,…, p}

 a directed acyclic graph (DAG) G = ([p], E)

 is Markov to  ifX = [X1, …, Xp]T G

where .paG(i) = {k ∈ [p] : k → i ∈ E}

Given random sample from  can we learn ? 
 (No, but some causal relations) 

X G

The DAG model for :

.

G
ℳ(G) = {X : X Markov to G}

Theorem. 

.
ℳ(G) = {X : X satisfies Global MP w.r.t. G}

The Global Markov Property w.r.t. : 

 whenever  and B are d-
separated given  in .

G

XA ⊥ XB |XC A
C G



Representing causal relations:
Theorem (Verma, Pearl, 1989).  if and only if  and  have the same skeleton 
and v-structures.

ℳ(G) = ℳ(H) G H

skeleton v-structure

Markov Equivalence Class (MEC):



With Experimental Data:
,  intervention targetsℐ = {I0 = ∅, I1, …, IK} Ik ⊆ [p]

an interventional setting ( f (0), …, f (K)) =
•  for all 


•  for all 
f (k) ∈ ℳ(G) k
f (k)(xi |xpaG(i)) = f (0)(xi |xpaG(i)) i ∉ Ik

ℳ(G, ℐ) = {( f (0), …, f (K)) for G and ℐ}

ℐ = {I0 = ∅, I1 = {3,4}}

Theorem (Yang et al., 2018).  if and only if  and  have the same 
skeleton and v-structures.

ℳ(G, ℐ) = ℳ(H, ℐ) Gℐ Hℐ



Causal discovery algorithms
For learning I-MECs :ℳ(G, ℐ)For learning MECs :ℳ(G)

• PC algorithm (Glymour, Spirtes, 1993)

• GES (Chickering, 2001)

• Imset LinOpt (Studeny, 2006)

• GreedySP (LS, Wang, Uhler, 2021)


• GrASP (Lam et al., 2023) 
• BOSS (Andrews et al., 2023)

• IFCI algorithm (Kocaoglu et al., 2019)

• GIES (Hauser, Bühlmann, 2012)

• QIGTreeLearn (Hollering, LS, Johnson, 2024)

• IGSP (Wang, LS, Yang, Uhler, 2017)

Best performers on the benchmarking platform for causal discovery methods: 
Benchpress (Rios, Kuipers, Moffa, 2022)

Powered by 
polyhedral geometry



Question. Can we identify more (or all) of the edges of the causal DAG without 
collecting (expensive) experimental data?

Idea (discrete data). Use observable context-specific CI (CSI) relations: 
XA ⊥ XB |XC, XD = xD

Idea (SEMs). Use additional assumptions on the structural equations: 
• LiNGAM models (Shimizu et al., 2006):


  with  non-Gaussian.

• Equal variances (Peters and Bühlmann, 2014):


 with   for all i.

Xi = ∑k∈paG(i) λkiXk + Ni Ni

Xi = ∑k∈paG(i) λkiXk + Ni Ni ∼ N(0, ω)

“Whether or not a child is a carrier of chicken pox is independent of all 
other background factors given that they haven’t been exposed.” 

Carrier ⊥ X1, …, Xm |Exposed = No

(Tikka et al., 2019)



Discrete Data: CStree models.
Building a CStree model (Duarte, LS, 2021):

• variable ordering: 


• relations  
such that the sets





 partition the joint state space of .


• union of all 

•  a CStree


•  for 


• The CStree Model for  is


.

π = π1⋯πp
𝒞π,i = {Xπi

⊥ X[π1:πi−1]∖S |XS = xS}

Sπ,i(xS) = {x[π1:πi−1] that agrees with xS}
Xπ1

, …, Xπi−1

s = Sπ,i(xS)
𝒯 = (π, s)
pa𝒯(x[π1:πi−1]) = S x[π1:πi−1] ∈ Sπ,i(xS)

𝒯

ℳ(𝒯) = X : fX(x) = ∏
i∈[p]

f(xπi
|xpa𝒯(xπ1:πi−1)

) LDAG  representation

(Pensar et al., 2015)



Scalable Learning of CStree models.
CStree algorithm (Rios, Markham, LS, 2024):


• bound the size of the sets  defining the 
contexts: .


• Requires enumeration of CStrees with , 
which solves a case of a family of problems 
proposed by (Alon, Balogh, 2023).


• Theorem. There are  

stagings of level i satisfying . 


• Theorem. Local computations time complexity 

S
|S | ≤ β

|S | ≤ β

1 − ( i
2) + ∑i

k=1 idk

|S | ≤ 2

𝒪(p2m |𝒮m,β |dβ)

Model learned in 
~5 seconds.

Medical diagnostic 
ALARM dataset 

(Beinlich et al., 1989): 



Gaussian data: Colored DAG models
•  a DAG and  where 


 


 independent and  if 


•  and .


• The Gaussian DAG model for  is:




• Partial homogeneity constraints: 
• vertex coloring: 

 
• edge coloring: 

G = ([p], E) X = [X1, …Xp]T

Xi = ∑
k∈paG(i)

λkiXk + Nk,

Ni ∼ N(0,ωi) λki = 0 k → i ∉ E
Λ = [λki] ∈ ℝp×p Ω = diag(ω1, …, ωp) ∈ ℝp×p

>0

G
ℳ(G) = {Σ ∈ PDp×p : Σ = (1 − Λ)−TΩ(1 − Λ)−1} .

c : [p] ⟶ [dV]; ωi = ωk ⟹ c(i) = c(k)

c : E ⟶ [dE]; λji = λℓk ⟹ c(ij) = c(kℓ)

Colored DAG models :ℳ(G, c)



Structural identifiability results.
• Theorem (Peters, Bühlmann, 2012). Vertex-

colored DAGs with a single color have model 
equivalence classes of size 1; i.e., they are 
structurally identifiable. 

• Theorem (Wu and Drton, 2023). Characterization 
of model equivalence classes of vertex-colored 
models. 

• Theorem (Boege, Kubjas, Misra, LS, 2024). 
Edge-colored DAGs with a single edge color are 
structurally identifiable. 


• Theorem (Boege, Kubjas, Misra, LS, 2024). 
BPEC-DAGs are structurally identifiable.

Structurally Identifiable

MEC 
characterization

MEC 
characterization

?

Structurally 
Identifiable 

?



Structural identifiability results.
A causal discovery algorithm:Proof idea:

The kernel  of the pullback 




of the parametrization map




is the set of all polynomials vanishing on the model 

. 


If ,  contains a polynomial





Given , we show any minimal generating set of 
 cannot generate . 

ker(ϕ*G,c)
ϕ*G,c : ℂ[Σ] ⟶ ℂ[Λ, Ω]

ϕG,c : (Λ, Ω) ⟼ (1 − Λ)−TΩ(1 − Λ)−1

ℳ(G, c)

c(ij) = c(kℓ) ker(ϕ*G,c)
|Σj∪paG( j)∖i | |ΣpaG(ℓ) | − |Σℓ∪paG(ℓ)∖k | |ΣpaG( j) |

(H, c′�)
ker(ϕ*G,c) ker(ϕ*H,c′�)

• Greedy Edge-Colored Search (GECS):

• edge-colored extension of GES

• currently learns BPEC-DAGs

• github.com/soluslab/coloredDAGs

BPEC-DAG representation of the causal relations between 11 
different biochemical properties relevant in white wine quality.

•0 = fixed acidity

•1 = volatile acidity

•2 = citric acid

•4 = chlorides

•7 = density



Questions.
Exercises: 
1. For the SEM ,  for :


1. convince yourself that G is identifiable via Markov equivalence.

2. intervene at , and convince yourself that the edges of the v-structure are causal.


2. Convince yourself that  is not identifiable, but it is identifiable if you intervene on .

3. Convince yourself that  is identifiable when we assume a Gaussian model with nodes 1 and 2 

having the same color.

4. Draw the staged tree and LDAG representations of all CStree models on 3 binary variables.  For each tree, 

associate the variables to some events so that the context-specific relations make sense to you.


Open Questions: 
5. Enumerate the ways to partition the d-dimensional cube  into non-overlapping faces of co-dimension 

at most 3.

6. Give an algebraic proof of the result of Peters and Bühlmann.


Considerations for applications: 
7. Think of some data sets where there may be clustering of direct causal relations.

8. Think of some data sets that may naturally contain context-specific CI relations.

X3 = λ13X1 + λ23X2 + N3 X1 ∼ N(0,ω1), X1 ∼ N(0,ω2), N3 ∼ N(0,ω3) G = 1 → 3 ← 2

X3
H = 1 → 2 → 3 X2
G = 1 → 2

[0, 1]d



Thank you for listening!
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• Linusson, Restadh, and LS. Greedy causal discovery is geometric. SIAM Journal on Discrete Mathematics (2023).

• Linusson, Restadh, and LS. On the edges of characteristic imset polytopes. Submitted (2023).

• Duarte and LS. Representation of context-specific causal models with observational and interventional data. Submitted (2022).

• LS, Wang, and Uhler. Consistency guarantees for greedy permutation-based causal inference algorithms. Biometrika (2021).

• Wang, Uhler, and LS. Permutation-based causal inference algorithms with interventions. The Proceedings of Neural Information 

Processing Systems (NeurIPS) (2017).


